
Cyclic Redundancy Check

Introduction
Different methods exist to calculate a check number for binary data, to be able to see if the
data is not altered, for example, after being sent through some communication channel.
Cyclic Redundancy Check (CRC) is a common method for protecting binary data that way.
Different CRCs exist, which in the past has resulted in a naming scheme. This page discusses
the standard ITU-TSS CRC, often written as a formula: G(x)=x16+x12+x5+1.
Characteristic of this CRC is its 16 bits size and its initial value $FFFF. Although, you can
encounter an initial value $0000 too.

Hardware
A CRC generator can be built as a piece of hardware.

Each bit (b) of the binary data is shifted into the CRC register after being XORed with the
CRCs most significant bit. This part of the generator ensures the cyclical aspect of CRC. The
XOR result is inserted in CRC bit 5 and 12 too. During the processing of bit b, all current CRC
bits (modified or unmodified) are shifted one position to the left.
If a byte must be processed, all 8 bits must be processed one after another. The most
significant bit is processed first.

Example:

Initial CRC value: 1111 1111 1111 1111

Byte to process: 0101 1010

New CRC value: 0001 1010 0100 1111

Formula

Expressed as a set of formulas, processing a bit b means:

c*15=c14 c*14=c13 c*13=c12 c*12=c11 c^0

c*11=c10 c*10=c9 c*9 =c8 c*8 =c7

c*7 =c6 c*6 =c5 c*5 =c4 c^0 c*4 =c3

c*3 =c2 c*2 =c1 c*1 =c0 c*0 =c15 b

Software

One can build a CRC generator in software, that is analoguous to the hardware solution. The
solution processes each bit separately.
Using the C programming language, the source code could be:
unsigned short crc = 0xFFFF;

unsigned short temp;

unsigned char byte = 0x5A; //just as an example

unsigned short index;

for(index = 0; index <= 7; index++)

 {

 temp = (crc >> 15) ^ (byte >> 7);

 crc <<= 1;

 if(temp)

 {

 crc ^= 0x1021;

 }

 byte <<= 1;

 }
First, b XOR c15 (the cyclical value) is calculated. Then the CRC bits are shifted to the left (c0
becomes 0). The cyclical value has to be processed in c0, c5 and c12. If the cyclical value
equals 1, bits c0, c5 and c12 are changed at the same moment by XORing the CRC with value
0001 0000 0010 0001 (0x1021). If the cyclical value equals 0, the CRC should be XORed with
value 0000 0000 0000 0000. XORing the CRC with 0x0000 does not change the CRC, and
therefore it is skipped. Finally the next bit to be processed is prepared.
In the source code example, the initial CRC value and the byte to be processed are already
defined. The calculations sub results are:

crc byte

F F F F 5 A

E F D F B 4

D F B E 6 8

A F 5 D D 0

5 E B A A 0

A D 5 5 4 0

4 A 8 B 8 0

8 5 3 7 0 0

1 A 4 F

Simplification

When processing a byte, the eight most significant bits of the 'old' CRC value, will be shifted
out of the CRC. Somewhere in the process, these bits will be XORed with the byte to be
processed. This XOR can be done at once and as a first step. A temporary variable is not
needed too.
The simpified source code could be:
unsigned short crc = 0xFFFF;

unsigned char byte = 0x5A;

unsigned short index;

crc ^= byte << 8;

for(index = 0; index <= 7; index++)

 {

 crc = crc & 0x8000 ? (crc << 1) ^ 0x1021 : crc << 1;

 }
In the source code example too, the initial CRC value and the byte to be processed are
already defined. The calculations sub results are:

crc

A 5 F F

5 B D F

B 7 B E

7 F 5 D

F E B A

E D 5 5

C A 8 B

8 5 3 7

1 A 4 F

Acceleration

To be able to accelerate the software CRC generator, we first take a look at the formulas that
express the processing of 8 bits (b7..b0), combined into a byte (b7..0).

t7..0 = c15..8
b7..

0

 t7..4

c15..13 = c7..5 t3..1
t7..

5

c12..12 = c4..4 t0..0 t4..4
t7..

7

c11..9 = c3..1
t6..

4

c8..8 = c0..0 t3..3 t7..7

c7..5 = t7..5 t2..0 t6..4

c4..4 = t4..4

c3..0 =

t3..0 t7..4

Note that combination t3..0 t7..4 is used serveral times (when you combine the proper formula
lines). The same way, t7..0 can be found a few times too. We use this fact to simplify the
formulas.

t7..0 = c15..8 b7..0

c15..0 =

c7..0 | 00000000

q15..0 = 00000000 | t7..0 000000000000 | t7..4

c15..0 = c15..0

 q15..0

q15..0 = 000 | q7..0 | 00000

c15..0 = c15..0 q15..0

q15..0 = q8..5 | 000000000000

c15..0 =

c15..0 q15..0

A | means the bit parts have to combined into one value.
The simplified formulas process 8 bits at a time. They form the basis of an accelerated source
code example.
unsigned short crc = 0xFFFF;

unsigned short temp;

unsigned short quick;

unsigned char byte = 0x5A;

temp = (crc >> 8) ^ byte;

crc <<= 8;

quick = temp ^ (temp >> 4);

crc ^= quick;

quick <<= 5;

crc ^= quick;

quick <<= 7;

crc ^= quick;
In this source code example too, the initial CRC value and the byte to be processed are
already defined. The one step calculation result is:

crc byte

F F F F 5 A

1 A 4 F

32-bit CRC

The ITU-TSS has defined a 32-bit CRC too. Its formula is:
G(x)=x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1=0
Below is a source code example for calculating the 32-bit CRC.

unsigned long crc = 0xFFFFFFFF;

unsigned char byte = 0x5A;

unsigned short index;

crc ^= byte << 24;

for(index = 0; index <= 7; index++)

 {

 crc = crc & 0x80000000 ? (crc << 1) ^ 0x04C11DB7 : crc << 1;

 }

2003-11-19

